D35 PRO SERIES

Maximum Flow Rate: 36.5 gpm (138 l/min) Maximum Pressure: 1500 psi (103 bar) for Metallic Pump Heads

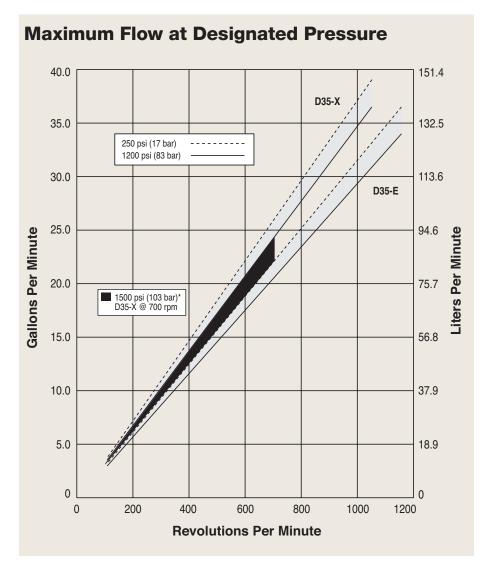
WANNER[™] HYDRA-CELL[®] PRO

SEAL-LESS PUMP TECHNOLOGIES

A higher standard of pump performance and efficiency.

- Integrates **Wanner Hydra-Cell**[®] **Pro** seal-less pump technologies for the highest levels of volumetric and energy efficiencies across a full rpm range.
- Seal-less design API 674 pumps that also exceed API 675 standards for accuracy, linearity and repeatability.
- True positive displacement pumping action achieves overall efficiency of >90%, targeting improvements at lower speeds and higher pressures.
- No mechanical dynamic seals, packing, or cups to leak, wear or replace – reduces maintenance, costs and downtime.

- Pumped liquid is 100% contained prevents degradation, contamination and environmental risks.
- Patented ADPC (Advanced Diaphragm Position Control) and hydraulic oil management system protects diaphragms under closed or restricted inlet conditions.
- Can run dry indefinitely without damage to the pump.
- Reliably handles a wide range of viscosities and shear sensitivities, corrosive liquids, abrasives, slurries and particulates.
- Reduced ownership costs in acquisition, operation, service, maintenance, and energy use.



Capacities

	Max. Input	Max. Flow Capacities @1200 psi (83 bar)		Max. Inlet Pressure		Max. Discharge Pressure Metallic Heads	
Model	rpm	gpm	l/min	psi	bar	psi	bar
D35-X	1050	36.5	138	500	34	1200	83
D35-E	1150	34.0	129	500	34	1200	83
Model	Max. Input rpm	Max. Flow Capacities @1500 psi (103 bar) gpm I/min		Max. Inlet Pressure psi bar			rge Pressure ic Heads bar
D35-X	700	23.1	87.5	250	17	1500	103

Performance and specification ratings apply to D35 configurations unless specifically noted otherwise.

* Consult factory if operating above 1200 psi (83 bar).

Due to the Wanner Engineering Continuous Improvement Program, specifications and other data are subject to change.

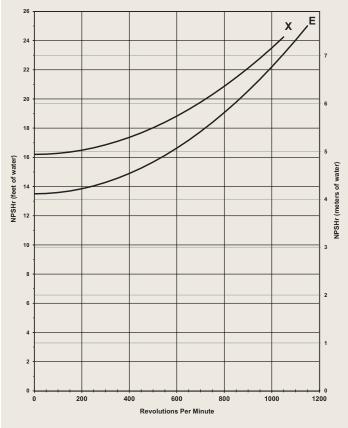
D35 Pro Series | Specifications

• •	,	1 /			
1150	34.0	129			
33 bar)					
gal/rev		liters/rev			
0.0347 0.1314		0.1314			
0.0296		0.1120			
103 bar)					
gal/rev		liters/rev			
0.0330		0.1250			
Pressure					
	si (83 ba	ır) @ 1150 rpm max.			
(83 bar).					
sure					
250 psi (17 bar) with 1500 psi (103 bar)					
maximum discharge pressure 500 psi (34 bar) with 1200 psi (83 bar)					
					maximum discharge pressure
Temperatu	ire				
	component selection for temperatures from				
	160°F (71°C) to 250°F (121°C).				
ze 800 microns					
2-1/2 ir	2-1/2 inch NPT				
		v			
	•				
,					
	1-1/4 inch SAE flange				
	rpm 1050 1150 83 bar) gal/rev 0.0347 0.0296 103 bar) gal/rev 0.0330 e Pressure 1200 ps 1500 ps Consult (83 bar) sure 250 psi maximu 500 psi maximu 500 psi maximu 250°F (1 compor 160°F (7 ze 800 mid 2-1/2 ir 150lb o 3 inch S 1-1/4 ir 600lb o	rpm gpm 1050 36.5 1150 34.0 83 bar) gal/rev 0.0347 0.0296 103 bar) gal/rev 0.0330 e Pressure 1200 psi (83 ba 1500 psi (103 b Consult factory (83 bar). e 250 psi (17 bar) maximum disch 500 psi (34 bar) sure 250°F (121°C) - component sele 160°F (71°C) to te 200 microns 2-1/2 inch NPT 150lb or 600lb 3 inch SAE flam 1-1/4 inch NPT 600lb or 1500lb	1050 36.5 138 1150 34.0 129 83 bar) gal/rev liters/rev 0.0347 0.1314 0.0296 0.0347 0.1314 0.0296 0.0347 0.1314 0.0296 103 bar) gal/rev liters/rev 0.0330 0.1250 e Pressure 1200 psi (83 bar) @ 1150 rpm max. 1500 psi (103 bar) @ 700 rpm max Consult factory if operating above 1200 (83 bar). esure 250 psi (17 bar) with 1500 psi (103 bar) maximum discharge pressure 500 psi (34 bar) with 1200 psi (83 bar) maximum discharge pressure 50° F (121°C) - Consult factory for correc component selection for temperatures f 160° F (71°C) to 250° F (121°C). e 800 microns 2-1/2 inch NPT 150lb or 600lb ANSI RF flange 3 inch SAE flange 1-1/4 inch NPT 600lb or 1500lb ANSI RF flange		

Calculating Required Power

100 x rpm 63,000	+	gpm x psi 1,460	= electric motor hp
100 x rpm 84,428	+	l/min x bar 511	= electric motor kW

Attention!


When using a variable frequency drive (VFD) controller, calculate the hp or kW at minimum and maximum pump speed to ensure the correct hp or kW motor is selected. Note that motor manufacturers typically de-rate the service factor to 1.0 when operating with a VFD.

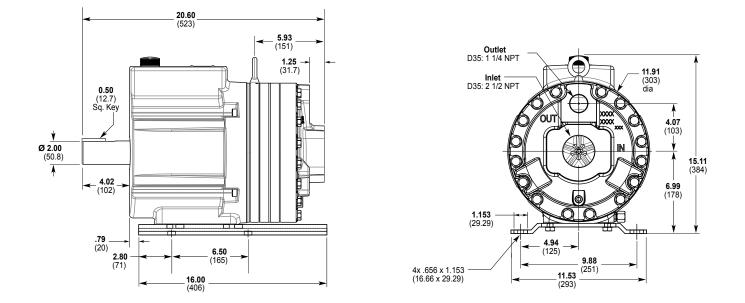
Calculating Pulley Size

motor pulley OD		pump pulley OD		
pump rpm	_	motor rpm		

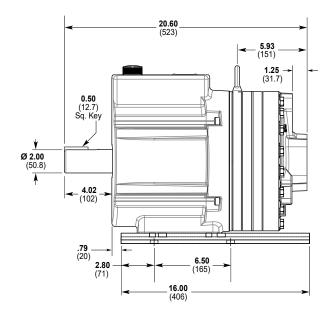
2 inch (50.8 mm)		
Reverse (bi-directional)		
Tapered roller bearings		
7.75 US quarts (7.3 liters)		
257 lbs. (116.6 kg)		

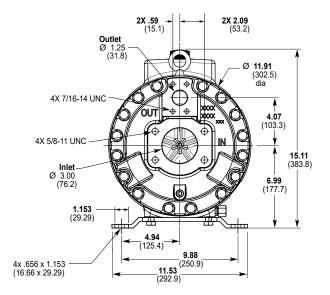
Net Positive Suction Head (NPSHr)

Note: Positive inlet pressure required with PTFE diaphragms.


Suction Lift

Each Hydra-Cell pump has different lift capability depending on model size, cam angle, speed, and fluid characteristics. To ensure that your specific lift characteristics are met, refer to the inlet calculations regarding friction, and acceleration head losses in your Hydra-Cell Product Manual. Compare those calculations to the NPSHr curves above.


Due to the Wanner Engineering Continuous Improvement Program, specifications and other data are subject to change.



D35 Models with NPT Inlet/Outlet Ports Inches (mm)

D35 Models with SAE Flange Inlet/Outlet Ports Inches (mm)

Note: Dimensions are for reference only. Contact factory for certified drawings.

D35 Models with ANSI Flange Inlet/Outlet Ports Inches (mm)

Note: Dimensions are for reference only. Contact factory for certified drawings.

Valve Selection

A seal-less **C64 Pressure Regulating Valve** is recommended for Hydra-Cell Pro D35 pumping systems, especially for high-pressure requirements or when handling dirty fluids.

A **C24 Pressure Regulating Valve** provides a capable, lower-cost alternative to C64 valves for Hydra-Cell Pro D35 pumping systems.

For complete specifications and ordering information, consult the Hydra-Cell Master Catalog.

Consult the Hydra-Cell Master Catalog for:

- Motors, bases, couplings and other pump accessories
- Hydra-Oil selection and specification information
- Design considerations, installation guidelines, and other technical assistance in pump selection

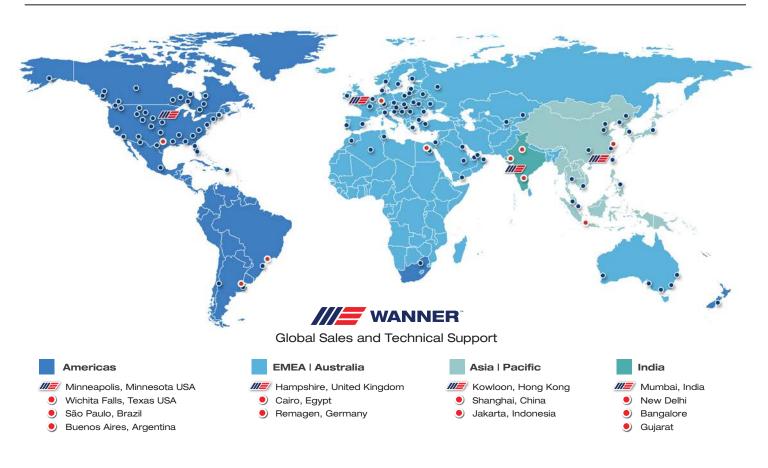
D35 Pro with Cast Iron pump head.

D35 Pro with Brass pump head.

D35 Pro with 316L Stainless Steel pump head and ANSI flanges.

Ordering Information

A complete D35 Series Model Number contains 12 digits including 9 customer-specified design and materials options, for example: D35XPBTHFECA.


Digit	Order Code	Description	Digit	Order Code	Description
1-3		Pump Configuration	10		Valve Springs
	D35	Shaft-driven (NPT Ports or ANSI Flanges or SAE		E	Elgiloy
		Flanged Ports)		Т	Hastelloy C
4		Hydraulic End Cam	11		Valve Spring Retainers
	Х	Max 36.5 gpm (138 l/min) @ 1050 rpm		C	Celcon
	E	Max 34.0 gpm (129 l/min) @ 1150 rpm		Н	17-7 Stainless Steel
5		Pump Head Version		М	PVDF
	Р	Hydra-Cell Pro		Р	Polypropylene
	Е	Hydra-Cell Pro SAE Flanged Ports		T	Hastelloy C
6		Pump Head Material		Y	Nylon (Zytel)
•	В	Brass	12		Hydra-Oil
	C	Ductile Iron (Nickel-plated)		Α	10W30 standard-duty oil
	G	Duplex Alloy 2205 Stainless Steel (with Hastelloy C		В	40-wt for continuous-duty oil (use with 316L SST
		followers & follower screws)		_	or Hastelloy CW12MW pump head - standard)
	Q	316L Stainless Steel ANSI flange class 600 x 1500		D	40-wt EPDM-compatible oil
	R	316L Stainless Steel ANSI flange class 150 x 600		E	Food-contact oil
	S	316L Stainless Steel - threaded or SAE ports		G	5W30 cold-temp severe-duty synthetic oil
	Т	Hastelloy CW12MW		Н	15W50 high-temp severe-duty synthetic oil
7		Diaphragm & O-ring Material			
	Α	Aflas diaphragm / PTFE 0-ring			
	В	Butyl			lousing is standard as Cast Aluminum.
	E	EPDM (requires EPDM-compatible oil – Digit 12 oil	Upę	grade to D	ouctile Iron available.
		code D)			
	G	FKM			
	J	PTFE (available with E cam only; 1050 rpm max.)			
	Р	Neoprene			
	Т	Buna-N			
8		Valve Seat Material			
	C	Ceramic			
	D	Tungsten Carbide (900 rpm max.)			
	H	17-4 Stainless Steel			
	N	Nitronic 50			
	Т	Hastelloy C			
9		Valve Material			
	C	Ceramic			
	D	Tungsten Carbide (900 rpm max.)			
	F	17-4 Stainless Steel			
	Ν	Nitronic 50			
	Т	Hastelloy C			

WANNER[™] HYDRA-CELL[®] PRO

SEAL-LESS PUMP TECHNOLOGIES

Partners in over 70 countries

Wanner worldwide

GLOBAL SALES & TECHNICAL SUPPORT

WANNER ENGINEERING, INC.

WORLD HEADQUARTERS & MANUFACTURING

Minneapolis, Minnesota USA t: 612-332-5681 e: sales@wannereng.com Hydra-Cell.com

REGIONAL OFFICE

Wichita Falls, Texas USA t: 940-322-7111 e: sales@wannereng.com

LATIN AMERICAN OFFICE

São Paulo, Brazil t: +55 (11) 99582-1969 e: mmagoni@wannereng.com Hydra-Cell-Pumps.com.br

WANNER INTERNATIONAL, LTD.

UNITED KINGDOM

Church Crookham, Hampshire UK GU52 8BF

t: +44 (0) 1252 816847 e: support@wannerint.com Hydra-Cell.co.uk

WANNER PUMPS. LTD.

Kowloon, HONG KONG t: +852 3428 6534 e: sales@wannerpumps.com WannerPumps.com

Shanghai, CHINA t: +86-21-6876 3700 e: sales@wannerpumps.com WannerPumps.com

WANNER INDIA PVT. LTD.

Mumbai, INDIA t: +91 (22) 22044766 e: support@wannerindia.com WannerIndia.com

